Analysis and Design Optimization of Fatigue Broken Wire of a Certain Aircraft Cable

SUN Hongjie, LI Zhongfang, LI Chengyu

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 49-56.

PDF(2763 KB)
PDF(2763 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 49-56. DOI: 10.7643/ issn.1672-9242.2025.12.007
Aviation and Aerospace Equipment

Analysis and Design Optimization of Fatigue Broken Wire of a Certain Aircraft Cable

  • SUN Hongjie1, LI Zhongfang2,*, LI Chengyu1
Author information +
History +

Abstract

The work aims to solve the problem of frequent fatigue and wire breakage of the cable at the guide pulley of the control system of a certain aircraft, and to prolong the service life of the cable. Based on the system layout and operation parameters, statics, dynamics and aerodynamics analyses were conducted on the cable transmission structure to analyze factors that affected the cable life. Through coupling stress analysis and multi-parameter optimization, the stresses under multi-parameters were comprehensively compared, and a reasonable optimization scheme was put forward. The research showed that the bending stress could be reduced by 15.3% by appropriately increasing the pulley diameter, the stress amplitude could be reduced by about 40% by moving the supporting groove forward, the peak stress could be reduced by 17.6% by optimizing the quality, the vibration energy absorption efficiency could be improved by 12% by adjusting the initial tightness, and the fatigue index of the cable could be effectively improved by replacing the materials. The stress analysis and optimization method of aircraft cable established in this study can provide theoretical basis for the anti-fatigue design of cable transmission system of aviation equipment.

Key words

aviation equipment / tab control system / cable drive / fatigue broken wire / stress analysis / dynamic analysis

Cite this article

Download Citations
SUN Hongjie, LI Zhongfang, LI Chengyu. Analysis and Design Optimization of Fatigue Broken Wire of a Certain Aircraft Cable[J]. Equipment Environmental Engineering. 2025, 22(12): 49-56 https://doi.org/10.7643/ issn.1672-9242.2025.12.007

References

[1] 赵凯, 王小燕, 韩郡业. 电梯噪声来源分析及降噪措施探讨[J]. 工程机械, 2025, 56(4): 184-188.
ZHAO K, WANG X Y, HAN J Y.Analysis of Lift Noise Sources and Discussion on Noise Reduction Measures[J]. Construction Machinery and Equipment, 2025, 56(4): 184-188.
[2] SHEN G, MACDONALD J, COULES H.Bending Fatigue Life Evaluation of Bridge Stay Cables[J]. Jou-rnal of Engineering Mechanics, 2022, 148(3): 0402-1168.
[3] 王晓明, 祁泽中, 朱鹏, 等. 超高强钢丝锌铝合金镀层腐蚀的元胞自动机模拟方法[J]. 湖南大学学报(自然科学版), 2023, 50(11): 53-61.
WANG X M, QI Z Z, ZHU P, et al.Corrosion Simulation Method of Ultra-High Strength Steel Wire Zinc-Aluminum Alloy Coatings Based on Cellular Automata[J]. Journal of Hunan University (Natural Sciences), 2023, 50(11): 53-61.
[4] HU Z, WANG E Y, JIA F Y.Study on Bending Fatigue Failure Behaviors of End-Fixed Wire Ropes[J]. Engineering Failure Analysis, 2022, 135: 106172.
[5] WANG B, WANG D G, YE J H, et al.Effect of Fatigue Load on the Bending Tribo-Corrosion-Fatigue Behaviors between the Main Cable Wires[J]. Friction, 2024, 12(7): 1512-1531.
[6] 李立群, 王联进, 王广超, 等. 16Ni3CrMoE 钢输出齿轮的热处理工艺研究[J]. 金属加工(热加工), 2025(5): 89-94.
LI L Q, WANG L J, WANG G C, et al.Study on Heat Treatment Technology of 16Ni3CrMoE Steel Output Gear[J]. Machinist Metal Forming, 2025(5): 89-94.
[7] ADAK N C, CHHETRI S, KUILA T, et al.Effects of Hydrazine Reduced Graphene Oxide on the Inter-Laminar Fracture Toughness of Woven Carbon Fiber/Epoxy Composite[J]. Composites Part B: Engineering, 2018, 149: 22-30.
[8] 张微敬, 胡宜洲, 王泽强. 带有部分碳纤维复合材料(CFRP)拉索的开口索穹顶结构静力性能分析[J]. 工业建筑, 2025, 55(10): 65-72.
ZHANG W J, HU Y Z, WANG Z Q.Static Performance Analysis of an Open Cable Dome Structure with Partial Carbon Fiber Reinforced Polymer (CFRP) Cables[J]. Industrial Construction, 2025, 55(10): 65-72.
[9] 常向东, 彭玉兴, 朱真才, 等. 重载传动钢丝绳摩擦磨损演化机理及服役性能退化特性研究[J]. 摩擦学学报, 2023, 43(12): 1393-1405.
CHANG X D, PENG Y X, ZHU Z C, et al.Friction and Wear Evolution Mechanism and Service Performance Degradation Characteristics of Heavy-Load Transmission Wire Rope[J]. Tribology, 2023, 43(12): 1393-1405.
[10] DING Y, YE X W, SU Y H, et al.A Framework of Cable Wire Failure Mode Deduction Based on Bayesian Network[J]. Structures, 2023, 57: 104996.
[11] 余槐, 袁鸿, 张国栋, 等. 3种典型航空齿轮钢电子束焊接头微观组织与力学性能[J]. 焊接, 2024(3): 33-39.
YU H, YUAN H, ZHANG G D, et al.Microstructure and Mechanical Properties of Electron Beam Welded Joints of Three Typical Aviation Gear Steels[J]. Welding & Joining, 2024(3): 33-39.
[12] 倪守领, 陈征, 窦金忠, 等. 天车主钩减速机高速轴断裂分析及改进措施[J]. 林业机械与木工设备, 2022, 50(5): 68-72.
NI S L, CHEN Z, DOU J Z, et al.Crack Analysis and Improvement Measures of High-Speed Shaft of Crane Main Hook Reducers[J]. Forestry Machinery & Woodworking Equipment, 2022, 50(5): 68-72.
[13] 葛建兵, 龚宪生, 彭霞, 等. 矿井提升机多层缠绕卷筒的振动特性[J]. 东北大学学报(自然科学版), 2022, 43(4): 551-558.
GE J B, GONG X S, PENG X, et al.Vibration Characteristics of Multi-Layer Winding Drum of Mine Hoists[J]. Journal of Northeastern University (Natural Science), 2022, 43(4): 551-558.
[14] 窦昆鸿, 潘晟, 罗翔. 机器人柔性踝横滚的快慢变切换控制方法[J]. 机械工程学报, 2022, 58(13): 81-88.
DOU K H, PAN S, LUO X.Fast-Slow Switching Control Method for Flexible Ankle Roll of Robot[J]. Journal of Mechanical Engineering, 2022, 58(13): 81-88.
[15] 高炜帆, 胡明, 沈晓强, 等. 基于柔索驱动的手术微器械设计与仿真分析[J]. 医疗卫生装备, 2023, 44(12): 20-24.
GAO W F, HU M, SHEN X Q, et al.Design and Simulation Analysis of Surgical Micro-Instrument Based on Flexible Cable Actuation[J]. Chinese Medical Equipment Journal, 2023, 44(12): 20-24.
[16] 孟琳, 于苏扬, 王兆满, 等. 电梯包覆带曳引传动力学特性[J]. 轻工机械, 2024, 42(4): 63-68.
MENG L, YU S Y, WANG Z M, et al.Mechanical Property of Elevator Coated Belt Traction Driving[J]. Light Industry Machinery, 2024, 42(4): 63-68.
[17] WANG S L, GAO X Y, HUANG Z Q, et al.Fatigue Characteristics, Failure Mechanism and Life Prediction of Copper-Aluminum Cable Joints Formed by Magnetic Pulse Crimping[J]. Engineering Failure Analysis, 2025, 174: 109483.
[18] 王学军, 普江华, 陈明方. 自动化生产线用同步带传动升降机的动态特性分析[J]. 工程设计学报, 2022, 29(2): 212-219.
WANG X J, PU J H, CHEN M F.Dynamic Characteristic Analysis of Synchronous Belt Transmission Elevator for Automatic Production Line[J]. Chinese Journal of Engineering Design, 2022, 29(2): 212-219.
[19] 乔伟. 卷扬机增设排绳器分析与设计[J]. 工程机械, 2022, 53(4): 70-74.
QIAO W.Analysis and Design of Adding Rope Arranger for Winch[J]. Construction Machinery and Equipment, 2022, 53(4): 70-74.
[20] 侯璋天, 张洪, 郑豪, 等. 高速电梯垂直方向动力学建模与计算研究[J]. 噪声与振动控制, 2023, 43(1): 86-92.
HOU Z T, ZHANG H, ZHENG H, et al.Vertical Direction Dynamic Modeling and Calculation of High-Speed Elevators[J]. Noise and Vibration Control, 2023, 43(1): 86-92.
[21] 夏巍. 带式输送机传动滚筒受力分析及结构优化分析[J]. 机械研究与应用, 2025, 38(1): 154-156.
XIA W.Force Analysis and Structural Optimization Research on the Transmission Drum of Belt Conveyor[J]. Mechanical Research & Application, 2025, 38(1): 154-156.
[22] 李善军, 牛成强, 万强, 等. 渗层强化的果园运输机驱动轮耐磨性能[J]. 农业工程学报, 2024, 40(2): 176-186.
LI S J, NIU C Q, WAN Q, et al.Wear Resistance of the Driving Wheels of Orchard Conveyor with Coating Strengthening[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(2): 176-186.
[23] 杨朝帅, 洪开荣, 胡杰, 等. 负泊松比锚索静动力学特性试验研究[J]. 科学技术与工程, 2025, 25(1): 301-308.
YANG C S, HONG K R, HU J, et al.Experimental Study on Static and Dynamic Mechanical Properties of NPR Cable[J]. Science Technology and Engineering, 2025, 25(1): 301-308.
[24] 严振林. 抽水蓄能大坡度斜井TBM施工配套运输系统研究[J]. 铁道建筑技术, 2025(1): 45-49.
YAN Z L.Research on Transportation System for TBM Construction in Large Inclination Inclined Shaft of Pumped Storage Power[J]. Railway Construction Technology, 2025(1): 45-49.
[25] 刘建华. 工程材料与机械制造[M]. 北京: 机械工业出版社, 2024: 366.
LIU J H.Engineering Materials and Machinery Manufacturing[M]. Beijing: China Machine Press, 2024: 366.
PDF(2763 KB)

Accesses

Citation

Detail

Sections
Recommended

/